The Distributional Effects of Tighter Regulations: New Evidence from the Sugarcane Burning in Florida

Xianru Han

Department of Agricultural and Resource Economics University of Maryland at College Park

June 2, 2023

EJ Concerns & Pollution Exposure

- The low-income communities and people of color disproportionately experience pollution exposure (Mohai et al., 2009; Banzhaf et al., 2019; Chakraborti and Shimshack, 2022).
 - Income inequality, discrimination, firm costs, and missing/inaccurate information about environmental quality (Hausman and Stolper, 2021).
- The sugarcane burning in Florida
 - Located in rural areas.
 - Presence of discriminatory regulations.
 - Influence of the big sugar company.
 - Only one air quality monitor.

Pollution Transport & Distributional Impacts

- Sugarcane fires are associated with negative health outcomes (Anenberg et al., 2010; Brook et al., 2010; Arbex et al., 2007; Cançado et al., 2006; Hernandez-Cortes, 2022).
- Solution: conduct a prescribed burn to mitigate the pollution locally (Hiscox et al., 2015).
- Florida authorities have prioritized the downwind affluent communities which may impose disproportionate burdens on low-income communities.

This paper examines the implications of recent changes in regulations regarding sugarcane burning.

- What are the effects of the policy change on sugarcane burning?
- How does the policy change impact the distribution of pollution damages across different socioeconomic communities?

Sugarcane Burning Zone Restrictions

- Zone 1: No cane burning when the wind is from NNW, NW, W, SW, or SSW.
- Zone 4: Burning with NW, W, or SW winds exceeding 15 miles per hour requires use of backing fire.

Tighter Burning Regulations in Florida

- Every pre-harvest burn in Florida requires a burn permit, which is granted only on the day of burning.
- On October 1, 2019, significant statewide changes to sugarcane burning regulations:
 - Implementation of burn authorizations that consider the Air Quality Index.
 - Updates to the **smoke plume prediction tool** with the latest weather models.
- These improvements represent the first major changes to sugarcane burning procedures in nearly 30 years.

Public Available Data

- Census tract-level daily panel data including fire counts and environmental data from 10/2012 to 09/2021.
 - **Fires Data**: Active Fire Data product based on NASA's Visible Infrared Imaging Radiometer Suite (VIIRS) at a 375-meter resolution.
 - **Sugarcane Coverage Data**: Cropland Data Layer provides annual crop acreage at every 30-by-30 meter pixel.
 - Weather Data: Daily temperature, precipitation, wind direction/speed, humidity, and visibility data from Visual Crossing Weather Data.
 - Pollution Data: Daily aerosol optical depth (AOD) from Google Earth Engine at a 1 km grid. ⇒ proxy for surface PM2.5
 - **Socioeconomic Characteristics**: Social Vulnerability Index created by the CDC.

Summary Statistics

	(1)	(2)	(3)
	Zone 4	Zone 1	Difference
Number of census tracts	33	358	
Acreage of sugarcane	205,077	3613	201,464***
	(18837)	(2852)	(0.000)
Share of sugarcane area in total area of agriculture	0.302	0.064	0.238***
	(0.031)	(0.053)	(0.000)
Daily total fires	0.181	0.001	0.180***
	(1.208)	(0.127)	(0.000)
Daily AOD level	205.067	206.183	-1.116
	(122.171)	(114.312)	(0.091)
SV overall ranking	0.747	0.409	0.338***
	(0.275)	(0.304)	(0.000)

*** p<0.01; ** p<0.05; * p<0.10

- Zone 1 is much larger and richer.
- The sugarcane scale is much larger in Zone 4.
- There are more fires in Zone 4.

Identification Strategy: Triple Difference (TD)

To estimate the impact of new policy changes on burnings:

$$Y_{idmt} = \beta_1 Wind_d + \beta_2 \times Post_t + \beta_3 Wind_d \times Post_d \qquad (1) + \beta_4 Wind_d \times Zone4_i + \beta_5 Zone4_i \times Post_d + \beta_6 Wind_d \times Zone4_i \times Post_d + \lambda W_d + \gamma_i + \rho_m + \mu_t + \epsilon_{idm}$$

- *Y_{idmt}*: the number of observed fires in census tract *i* on date *d* in month *m* and year *t*.
- $Wind_d = 1$ if the policy restricts burning on that day.
- *W_{id}* are weather controls.
- γ_i census tract fixed effects; ρ_m month-of-year fixed effects and μ_t - year fixed effects controlling for seasonality in harvesting activities.

Identifying Assumption

To have a causal interpretation, the triple difference estimation requires that Zone 1 and Zone 4 exhibit similar outcome trends in the absence of the 2019 policy changes.

Shifting the Timing of Burning

Impact of policy change on daily observed fires (TD)

	# of fires
Wind	-4.1*
	(2.1)
Post	-13.1***
	(4.2)
Wind \times Post	0.26
	(0.71)
Wind × Zone4	39.2***
	(12.0)
Zone4 × Post	44.9**
	(21.6)
Wind \times Zone4 \times Post	-75.1**
	(31.6)
Pre dep mean (Zone4)	0.181
Number of obs	599,697
Census FE	\checkmark
Month FE	\checkmark
Year FE	\checkmark
Standard error clusters	census

On the restricted days, # of fires in Zone 4 ↓ by 41%.

Shifting the Timing of Burning

Impact of policy change on daily observed fires (TD)

	# of fires
Wind	-4.1*
	(2.1)
Post	-13.1***
	(4.2)
Wind \times Post	0.26
	(0.71)
Wind \times Zone4	39.2***
	(12.0)
Zone4 × Post	44.9**
	(21.6)
Wind \times Zone4 \times Post	-75.1**
	(31.6)
Pre dep mean (Zone4)	0.181
Number of obs	599,697
Census FE	\checkmark
Month FE	\checkmark
Year FE	\checkmark
Standard error clusters	census

- On the restricted days, # of fires in Zone 4 ↓ by 41%.
- On the non-restricted days,
 # of fires in Zone 4 ¹

Shifting the Timing of Burning

Impact of policy change on daily observed fires (TD)

	# of fires
Wind	-4.1*
	(2.1)
Post	-13.1***
	(4.2)
Wind \times Post	0.26
	(0.71)
Wind \times Zone4	39.2***
	(12.0)
Zone4 × Post	44.9**
	(21.6)
Wind \times Zone4 \times Post	-75.1**
	(31.6)
Pre dep mean (Zone4)	0.181
Number of obs	599,697
Census FE	\checkmark
Month FE	\checkmark
Year FE	\checkmark
Standard error clusters	census

- On the restricted days, # of fires in Zone 4 ↓ by 41%.
- On the non-restricted days,
 # of fires in Zone 4 ¹.
- ▶ The # of fires in Zone $1 \downarrow$.

Distributional impacts in Zone 1

On the restricted days, the number of fires in Zone 4 \downarrow .

To understand how the wind restrictions in Zone 4 affect the air quality in Zone 1 after the policy changes:

$$Y_{idmt}^{Zone1} = \delta_1 \times \overline{WR_d^{Zone4}} + \delta_2 \times Post_{id}$$
(2)
+ $\delta_3 \times Post_{id} \times \overline{WR_d^{Zone4}}$
+ $\lambda W_{id} + \gamma_i + \rho_m + \mu_t + \epsilon_{idm}$

 Y^{Zone1} is the logged daily AOD level in census tract i in Zone 1 on date d in month m and year t.

[►] WR^{Zone4} is the proportion of census tract in Zone 4 that have wind restrictions on date d.

Air Quality in Zone 1 Improves

	All	Highly vulnerable	Non-highly vulnerable
	logAOD	logAOD	logAOD
Post	0.235***	0.207***	0.239***
	(0.007)	(0.023)	(0.007)
WR _d ^{Zone4}	-0.083***	-0.066***	-0.085***
	(0.003)	(0.013)	(0.003)
$\overline{WR_d^{Zone4}} \times Post$	-0.042***	- <mark>0.066***</mark>	-0.039***
	(0.006)	(0.017)	(0.006)
Ν	311,781	30,944	280,744

Distributional effects in Zone 1 (DD)

- ▶ When the wind is projected to blow towards Zone 1, the daily AOD level decreases by 3.9% to 6.6% in Zone 1.
- ▶ Falsification test during the non-harvest season: $\overline{WR_d^{Zone4}} > 0$

Distributional impacts in Zone 4

On the non-restricted days, the number of fires in Zone 4 \uparrow .

To see whether the communities in Zone 4 experience worse air quality on non-restricted days:

$$Y_{idmt}^{Zone4} = \varphi_1 \times \overline{NWR_d^{Zone4}} + \varphi_2 \times Post_{id}$$
(3)
+ $\varphi_3 \times Post_{id} \times \overline{NWR_d^{Zone4}}$
+ $\lambda W_{id} + \gamma_i + \rho_m + \mu_t + \epsilon_{idm}$

 Y^{Zone4} is the logged daily AOD level in census tract *i* in Zone 4 on date *d* in month *m* and year *t*.

$$\blacktriangleright \ \overline{NWR_d^{Zone4}} = 1 - \overline{WR_d^{Zone4}}$$

Air Quality in Zone 4 Degrades

Distributional effects in Zone 4 (DD)

	All	Highly vulnerable	Non-highly vulnerable
	logAOD	logAOD	logAOD
Post	0.129***	0.117***	0.144**
	(0.030)	(0.038)	(0.049)
NWR_d^{Zone4}	0.189***	0.181***	0.199***
	(0.014)	(0.019)	(0.021)
$\overline{\textit{NWR}_{d}^{\textit{Zone4}}} \times \textit{Post}$	0.070***	<mark>0.074**</mark>	<mark>0.060**</mark>
	(0.018)	(0.027)	(0.024)
N	33,340	19,164	14,176

- When the wind is projected to blow towards Zone 4, the daily AOD level increases by 6.0% to 7.4% in Zone 4.
- Falsification test during the non-harvest season: $\overline{NWR_d^{Zone4}} > 0$
- The tighter regulations in 2019 may further increase the environmental inequality in Zone 4.

Conclusion

On restricted days, the number of fires in Zone 4 ↓.
 ⇒ Air quality in Zone 1 ↑.

On non-restricted days, the number of fires in Zone 4 ↑.
 ⇒ Air quality in the highly vulnerable communities of Zone 4 ↓.

The unintended consequence of the policy: exacerbate disparities in exposure and potentially overlook the well-being of communities near the sugarcane fields.

Policy Implications

- Policymakers wishing to reduce air pollution face two challenges: the **demographic characteristics** of people living around the sugarcane field and the **economic efficiency** of burning sugarcane.
- Balance the needs of larger populations with the well-being of communities in close proximity to the pollution source.
- The environmental justice problems need environmental justice policies (Hernandez-Cortes and Meng, 2023).

Thank You!

Xianru Han xhan1236@umd.edu